OUTLINE of HFR

Highfrequency Viscoelasticity Corporation

To realize the 3R that are desired in the industry

- It has specialized in the high frequency region
- It can be measured in the field environment (Real condition)
 (Unnecessary cryostat Unnecessary temperature-time conversion)
- Short measurement time
- You can measure the actual thing

(Real time)

(Real sample)

Features of the highfrequency viscoelasticity measurement apparatus HFR002

- Unnecessary calculation of troublesome ultrasonic measurement
- Viscoelastic measurement results display a spectrum
- The numeric data in Excel output
- It can also be measured of time-varying sample by Timer measurement

Measurement result display screen

Sensors and sample

Measurement example of highfrequency viscoelastic properties of rubber

23°C

Correlation between a functional properties

MHz band viscoelastic properties can be measured easily by using high frequency viscoelastic measurement apparatus HFR. So it became possible to study correlation between a functional properties (e.g. friction) and high frequency viscoelasticity in the actual operating temperature.

HFR

RRL

Spectrum of $tan \delta$.

Spectrum of friction coefficient μ .

23°C

Correlation between $tan\delta$ and friction coefficient.

23°C

$$F = F_h + F_a$$

$$= K \cdot E'^{-\frac{1}{3}} tan\delta + A \cdot s$$
By amino, iwai, uchiyama

Highfrequency Viscoelasticity Corporation

Measurement example of the highfrequency viscoelasticity of various materials

Waveform collection configuration

- 1 You can absolute value measured by the reference waveform A0.
- ②And calculates the viscoelasticity by the surface reflected wave A1 and the bottom surface reflected wave B.

(Bottom method)

③It is also possible to calculate a viscoelastic alone the surface reflected wave A1. (Surface method)

Viscoelastic spectrum formula

Each of the waveform FFT processing, acoustic properties (sound velocity Vp, the attenuation factor α , density ρ) by substituting the viscoelastic formula to calculate the complex modulus. (Bottom method)

$$L' = \rho V_p^{2}, \quad L'' = \frac{2\alpha\rho V_p^{3}}{\omega} = \frac{2\alpha V_p}{\omega} L'$$

$$\tan \delta = \frac{L''}{L'} = \frac{2\alpha V_p}{\omega}$$

A0 Reference reflected wave

Longitudinal waves elastic modulus	L=K+4G/3
Bulk modulus	K=L-4G/3
Young's modulus	E=9KG/(3K+G)
Shear modulus	G=3KE/(9K-E)
Poisson's ratio	$\nu = (3K-2G)/2(3K+G)$

HFR002 high frequency viscoelasticity evaluation apparatus

Standard specifications

- Measurement frequency: 0.5 to 20MHz
- * Multiple sensors are required. The measurement band varies depending on the measurement sample.
- -Sample: Solid, suspension, liquid (each has a separate attachment)
- Sample size: Flat size 50x50 mm or more Approximately 1 to 10 mm thick (varies depending on the measurement sample and measurement band)
- For solids, parallelism and thickness accuracy affect measurement accuracy, so please contact us.
- Solid measurement unit size WDH: 250X200X400mm
- HFR002 controller size WDH: 450X650X700mm
- * A constant temperature bath is required for high-precision measurement.
 (Inner dimensions WDH: 360x250x420mm or more)
- Weight: 65kg
- Power supply: 100V 1000w Class D grounding

Development, manufacturing and sales **HFVE**

Highfrequency Viscoelasticity Corporation

<Headquarters>

Heights TMK B-101, 709-10 Narushima-cho, Tatebayashi-shi, Gunma 374-0055 http://www.highfrequency-viscoelasticity.com

info@highfrequency-viscoelasticity.com

Equipment full view

Controller